

HSE Occupational Health & Safety and Environmental Protection unit

CROME CERN New Radiation Monitoring System For the Safety and Environment

Dr. Hamza BOUKABACHE

20/09/2022 - ATSR

Daniel Perrin, Clyde Laforge, Gael Ducos, Michel Pangallo, Amitabh Yadav, Markus Widorski, Doris Forkel-Wirth, Stefan Roesler

CROME is CERN New Radiation Monitoring System for Safety and Environment

Why do we need a radiation monitoring system at CERN?

18/10/2022

Why do we need a radiation instrumentation system When Accelerators are in operation

The interaction beam-matter generates stray radiation

5

Why do we need a radiation monitoring

300 – 400ns

Why do we need a radiation instrumentation system When Accelerators are in operation

The interaction beam-matter generates stray radiation

Beam tunnel:

When Accelerators are stopped

CROME System

Introduction

The interaction beam-matter has made the matter radioactive (activation)

Measurement

Areas with risks due to ionizing radiation are classified and continually monitored When the ambient dose rate is bellow the safety threshold and the survey is Ok : Accesses are re-opened

18/10/2022

Why do we need a radiation instrumentation system

When Accelerators are stopped

The interaction beam-matter has made the matter radioactive (activation)

Areas with risks due to ionizing radiation are classified and continually monitored

Wh the

When the ambient dose rate is bellow the safety threshold and the survey is Ok : Accesses are re-opened

Conclusion

Radiation & Environmental Protection Before LS2

Radiation & Environmental Protection

CROME Requirement - 2015

Development of a new generation of monitoring system

CROME System

This system provides:

Introduction

Continuous real-time monitoring of ambient dose equivalent rates over 9 decades

Measurement

- Alarm and interlock functionality with a probability of failure down to 10e-7
- Long term permanent and reliable data logging by linking to a SCADA supervision
- Edge computing : Powerful processing capabilities for embedded calculation
- Versatile interface
- Replacing ARCON system
- Preparing for future, RAMSES : 14 years of operation

What is CROME ?

(North Area

EHN1

at

CROME Rack

Uninterruptible Power Supply Includes a battery for continuous operation

CROME Ecosystem

CROME

Modular Architecture

ARCON

Introduction

Centralized Architecture

RAMSES

Federated Architecture

CROME Bulk System for low radiation areas :

CROME Bulk (Wall-mount) Version

CROME Rack System for high radiation areas :

CROME Rack-mount Version at CERN at the PS Booster

High Radiation Area

Radiation Safe Area

RAMSES System (Outsourced 2004)

Example of the MS Rack

 Fault resilient FPGA design for 28 nm ZYNQ system-on-chip based radiation monitoring system at CERN

 C.TonerH.Boukabache, G.Ducos, M.Pangallo, S.Danzeca, M.Widorski, S.Roesler, D.Perrin

 Microelectronics Reliability Journal

Measurement

Introduction

All the components have been individually analyzed (> 3000 references)

CROME System

- Critical components have been replaced
- Redundancies

Critical decisions are taken into the FPGA section of the SoC (38 billion of possible combinations)

- ✓ SIL2 compatible floating point calculation engine
- Developed a safe architecture (memories are protected, data is exchanged and checked with checksums)
- ✓ Direct democracy with a global triplication :

Measurement

Introduction

All the components have been individually analyzed (> 3000 references)

CROME System

- Critical components have been replaced
- Redundancies

Extended testability 97% of dangerous failur<mark>e</mark>s

1 10 1

Critical decisions are taken into the FPGA section of the SoC (38 billion of possible combinations)

- ✓ SIL2 compatible floating point calculation engine
- Developed a safe architecture (memories are protected, data is exchanged and checked with checksums)
- \checkmark Direct democracy with a global triplication :

 $PFH = 8.24 \cdot 10^{-8} fpmh$

CROME System

Measurement

North Area (EHN1)

Introduction

Production and Deployment

CERN Radiation Monitoring Electronics (CROME)

Production and Deployment

CERN Radiation Monitoring Electronics (CROME)

What can we do with CROME ?

Introduction

CERN

Detector Linearity

Experiment at the PTB (Physikalisch-Technische-Bundesanstalt) (Germany)

Static characterization

Front-end Performances Linearity

LNE – Certified Lab in Paris (France)

Static Characterization Calculation of the Calibration Factor

Calibration 05/10/2018				
IG5-H20			inv	ProtoA2 002
Coeff. d'etalonnage gamma:		1.03	+/-	0.08 (k=2)
Coeff. d'etalonnage neutron:		1.00	+/-	0.06 (k=2)
Calibration va	alid until:	05/10/2021		

CROME System Under Calibration

Nice system ! Where can I buy it ?

Production and Deployment

Pre-Prototype

Measurement Validation Static performance assessment Prototype 2

RAMS Assessed

Qualification prototype - 100% of functionalities

12 11

Conclusion

X 100

X 125

X 100

X 25

X 31

X13

CROME Production

In 2018, 8 different fully operational equipment were completely designed :

- >3000 different electronic components references
- 25 EDA (every one include CADs and BOMs)
- 62 mechanical plans

→ Definition of the manufacturing process to produce ~10000 sub-assemblies for the assembly of 500 devices

CROME Production: Chain of Value

CROME Electronics Suppliers in 2018/19 (without CERN) of orders (5 main distributors)

CROME Team

CROME Assembly

Assembly and integration of CROME Bulk version

Assembly and integration of CROME Rackable version

HW integration automated tests

Temperature stress validation

Temperature compensation

Automated current calibration

HW integration automated tests

x100

x125

CROME deployment

CROME deployment

Conclusion

Radiation & Environmental Protection After LS2

The development, production and ARCON replacement with 532 equipment allowed us to internalize all the knowhow

39

CROME Majors Technical Innovations

- <u>Unified solution</u> for radiation and environmental monitoring without modifications
 - \rightarrow Among the best current measurement sensitivity in the scientific state of the art [1] [2]
- Among the very first systems at CERN/ATLAS/CMS/LHCb that uses Heterogeneous System on Chip based processing and control system
 (Indico : SoC at CERN)
- First Safety System at CERN to use SoC
- First verification methodology for safety critical FPGA at CERN [3]

[1] Towards A novel modular architecture for CERN radiation monitoring, H. BOUKABACHE et al., Radiation Protection Dosimetry, 01 December 2016 [2] Comparative analysis of ultra-low current measurement topologies with implementation in 130nm technology S.K. MOHANAN, H. et al. IEEE ACCESS

[3] A functional verification methodology for highly configurable, continuously operating safety- critical FPGA designs: Applied to the CERN RadiatiOn Monitoring Electronics (CROME) K. CEESAY-SEIT et al. Conference: 39th International Conference on Computer Safety, Reliability and Security.

Introduction CROME System Measurement

Production and Deployment

Conclusion

CROME at **ESS**

Cryogenic test stand (TS2b) and Normal Conducting LINAC

Ionizing radiation monitoring using CROME at ESS

Outlooks : Prepare for the future

Prepare for future with new upgrades

Accurate 1 characterization

A new development

Accurate 2

2020

Preparing for future with an integrated solution

Outlooks : Prepare for the future

Thank you very much for your attention

Detector Static Characterization

Detection spectrum

Response to Mixed Fields

CROME System Reliability

SIL Verification according to IEC 61508

Safety Integrity Requirements :

To achieve a definite SIL, the SIF must meet all safety requirements.

1- Systematic Safety Integrity (Process Quality Assurance)

2- Hardware Safety Integrity

2.1 - Architectural Constraints

3- Software Safety Integrity

	SIL1	SIL2	SIL3	SIL4
Systematic safety integrity		X		
Hardware safety integrity			X	
Software integrity			X	
Overall safety integrity		X		